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Derivation of low-temperature expansions for Ising model VI. 
Three-dimensional lattices-temperature grouping 
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Abstract. A brief description is given of the derivation of series expansions for the three- 
dimensional Ising model of a ferromagnet and antiferromagnet as a low-temperature 
grouping. New results are given for the ferromagnetic polynomials for the face-centred 
cubic lattice to order 40; for the ferromagnetic and antiferromagnetic polynomials for the 
body-centred cubic lattice to order 28, for the simple cubic lattice to order 20 and for the 
diamond lattice to order 15. 

1. Introduction and summary 

In this paper we extend the series expansions of four three-dimensional lattices : the 
face-centred cubic, body-centred cubic, simple cubic and diamond, as a temperature 
or U grouping. We have introduced the problem and defined the notation in previous 
papers (Sykes et a1 1965, 1973a, b, c to be referred to as I, 11,111, IV respectively); data 
for the field or p grouping for three-dimensional lattices are given in I and Sykes et a1 
1973d (to be referred to as V). 

We give new results for the ferromagnetic polynomials through $40 for the face- 
centred cubic lattice ; for the ferromagnetic polynomials through $28 and the corre- 
sponding antiferromagnetic polynomials $;4 through $;8 for the body-centred cubic 
lattice; through and $t9, $;o for the simple cubic lattice; through 1(115 and 1+ha1~, 
$t4, $; for the diamond lattice. From these polynomials we derive zero-field expansions 
to the same order for the configurational free energy, the spontaneous magnetization, 
and the ferromagnetic and antiferromagnetic susceptibilities. 

The expansions have application to the elucidation of the physical properties of 
the model and are of special interest in the theory of scaling. We make an analysis of 
some of the new data in a companion paper (Gaunt and Sykes 1973). 

2. Face-centred cubic and diamond lattices 

For the face-centred cubic lattice the complete high-field polynomials J!,l-J!,, derived in 
I and V provide on re-arrangement the U grouping through u32 ; to extend the expansion 
through u40 it is necessary to include contributions from configurations with up to 12 
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spins. The leading term of $40 corresponds to an unique configuration with 12 spins 
and 32 bonds : 

which contributes 24,u12. The next term, 5298,u", corresponds to numerous configura- 
tions of 11 spins and 26 bonds. We have completed the polynomials through qh0 and 
list them in appendix 1. 

To obtain the U grouping for the diamond lattice we have derived partial codes for 
the diamond-face-centred cubic system by a straightforward extension of the theory of 
IV, Q 2. Each code (A, a, b, y, 6) can be interpreted in two ways ; on the face-centred cubic 
lattice by the substitution (3.9) of I1 which reduces in zero field to 

(A, a, p, y ,  6) = + 4B + 3 Y )  (2.1) 

and on the diamond lattice by the substitutions (2.6) and (2.7) of I1 which reduce in 
zero field to 

It follows from a comparison of (2.1) and (2.2) that to obtain all the contributions to a 
given power of U on the diamond lattice it would suffice to encode all configurations 
that contribute to the cube of that power, or less, on the face-centred cubic lattice. 
However this condition is only necessary for codes with fi = 0 and in practice we have 
been able to obtain the partial codes to complete on the diamond lattice by encoding 
all the configurations on the face-centred cubic used to derive the U grouping through 
u40 together with a few extra configurations found by inspection. We give the ferro- 
magnetic polynomials in appendix 1 and the corresponding antiferromagnetic poly- 
nomials in appendix 2. These latter are defined by (1.11) of 11: 

These two sets of polynomials are the most generally useful ; they determine the suscepti- 
bilities through the relations 

La = In A" 

(2.4) 

The partial codes are numerous and can be used to provide the more detailed information 
required for theferrimagnetic polynomials (1.7) of I1 : 

In A = Il/A,u, v)us. (2.6) 
S 
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The enumerations required to provide the data in appendixes 1 and 2 are extensive; 
considerable care has been taken to check the derivation and it is hoped that errors 
have been eliminated. 

3. Simple cubic and body-centred cubic lattices 

We have extended the U grouping for the simple cubic lattice by direct enumeration 
through uZo. The ferromagnetic polynomials are listed in appendix 1. The leading term 
of ll/zo corresponds to two configurations of 16 spins and 28 bonds : 

3 N  12N 

In contrast to the shadow system of octahedra (V, 0 3) ,  which is visually difficult, direct 
enumeration is visually simple and straightforward although tedious. We have derived 
the corresponding partial codes and the antiferromagnetic polynomials are listed in 
appendix 2. 

For the body-centred cubic lattice the leading term of 11/28 corresponds to a con- 
figuration of 15 spins and 32 bonds : 

N 

which may be described as the 'fourteen-neighbour figure' obtained by taking a site 
and its eight first and six second neighbours. 

The sub-lattice division is 7-8 and the corresponding seventh order code, 
(32,  24,0,0, 8 )  results from a cube with six other cubes, one on each face. In contra- 
distinction to the simple cubic lattice the shadow system (V, § 3) is visually simple but 



1510 A4 F Sykes, D S Gaunt, J W Essam and C J Elliott 

direct enumeration awkward as the configurations are difficult to classify. We have 
extended the U grouping on the body-centred cubic lattice through u28 by deriving the 
partial codes ; the ferromagnetic and antiferromagnetic polynomials are listed in the 
appendixes. A method of deriving codes for the body-centred cubic lattice by electronic 
computer is described by Elliott (1969) who gives some higher terms. 

4. Expansions for zero magnetic field 

From the results of $0 2 and 3 and appendix 1 the corresponding series expansions for 
the physical properties in zero magnetic field are readily derived. For the face-centred 
cubic lattice we obtain twelve new coefficients for the reduced configurational free 
energy and spontaneous magnetization, to supplement the expansions given in I, 
appendix 4 : 

In A(u) = . . . - 4 1 5 2 6 ~ ~ ~  + 8 7 7 7 & ~ ~ ' - 6 1 4 4 6 u ~ ~  - 5 4 4 0 2 ~ ~ ~  + 7 7 2 6 2 4 ~ ~ ~  

- 13 1 7 9 6 0 ~ ~ ~  + 6 6 1 8 4 8 ~ ~ ~  - 8 2 0 6 6 5 i ~ ~ ~  + 1 5 4 9 4 0 8 ~ ~  

+ 8 0 8 4 3 8 2 ~ ~ ~  - 2 8 5 8 9 4 5 2 ~ ~ ~  + 29889394)~~' . . . (4.1) 

I (u )  = . . . + 4 0 6 0 5 6 ~ ~ ~ - 7 9 5 3 2 ~ ~ '  + 7 2 9 9 1 2 ~ ~ ' + 6 3 1 6 0 8 ~ ~ ~  - 9 2 7 9 3 7 6 ~ ~ ~  

+ 1 5 7 7 1 6 0 0 ~ ~ ~ -  7 4 6 7 3 3 6 ~ ~ ~  + 1 0 9 3 5 1 1 4 ~ ~ ~  - 2 1 8 3 5 5 2 4 ~ ~ ~  

- 1 1 2 7 5 2 6 8 4 ~ ~ ~  + 4 0 0 5 7 6 1 6 8 ~ ~ ~  -410287368~~' .  . . . (4.2) 

From (4.1) the reduced configurational energy U and the specific heat at constant field 
C, follow through the defining relations 

aL 
U(u)  = 4u- au 

C, 1 au 
R ( l n ~ ) ~  4 au 
-- - - U - .  

(4.3) 

(4.4) 

The ferromagnetic susceptibility is not given in I and we quote the expansion in full : 

$Z(U)  = ~ ~ + 2 4 ~ " - 2 6 ~ ' ~ + 7 2 ~ ' ~ + 3 7 8 ~ ' ~ - 1 0 8 0 ~ ' ~ + 6 6 5 ~ ' ~ + 3 8 4 ~ ' ~  

+ 1968u2'+ 2 0 1 6 ~ ~ '  - 2 5 6 9 8 ~ ~ ~  + 3 9 5 5 2 ~ ~ ~  - 3 8 7 2 ~ ~ ~  

+ 2 0 8 8 0 ~ ~ ~  - 6 5 7 2 7 ~ ~ ~  - 3 7 9 0 7 2 ~ ~ ~  + 1 2 7 7 6 4 6 ~ ~ ~  - 9 8 6 8 5 6 ~ ~ ~  

+ 176978~~ ' -2163504~~ '  - 1 8 1 8 9 9 6 ~ ~ ~  + 2 7 8 7 1 0 8 0 ~ ~ ~  

- 4 7 1 3 8 8 4 4 ~ ~ ~  f 2 0 7 8 9 4 2 4 ~ ~ ~  - 3 6 5 0 9 6 5 2 ~ ~ ~  + 7 7 0 5 . 5 3 3 0 ~ ~ ~  

+ 3 9 3 0 4 6 6 5 6 ~ ~ ~  - 1 4 0 2 9 3 4 8 1 6 ~ ~ ~  + 1403843388~~'. . . . (4.5) 

For the diamond lattice we obtain three new coefficients for the configurational free 
energy and spontaneous magnetization to supplement the expansions given by Essam 
and Sykes (1963) and in I, appendix 4, together with the ferromagnetic susceptibility 
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through U'' : 

In A(u) = . . .+26956ul3 + 9 3 1 4 ~ ~ ' ~ + 3 2 9 2 5 8 ~ u ' ' .  . . 
Z(U) = . . .-2924680ul3- 11596284~'~-46364456~' ' .  . . 

&(U) = ~ ' + 8 u ~ + 4 4 u ~ + 2 0 8 ~ '  +984u6+4584u7+21314u8+98292u9 

+448850~''+2038968u'' +9220346u" +41545564uI3 

+ 186796388~'~+838623100u'~ + . . . . (4.8) 

From the data in appendix 2 we obtain three new coefficients for the antiferromagnetic 
susceptibility to supplement appendix 5 of I : 

~ " ( y )  = . . . + 231728~ '~  + 863664~ '~  +3313392y3' , , . . (4.9) 

For the simple cubic lattice we obtain two new coefficients for the configurational 
free energy, spontaneous magnetization and antiferromagnetic susceptibility to supple- 
ment appendixes 4 and 5 of I, together with the ferromagneticsusceptibility through U'' : 

In A(u) = . . . + 6583341~ '~  - 20852363au''. . . 
Z(U) = . . . - 101585544~'~ + 338095596~" . . . 
~ " ( y )  = . . . + 5 3 4 5 7 6 9 6 ~ ~ ~  - 177637248~~' . , . 

(4.10) 

(4.1 1) 

(4.12) 

&U) = u3 + 1 2 ~ '  - 14u6 + 135~ '  - 2 7 6 ~ ~  + 1 . 5 2 0 ~ ~  -4056~" + 17778~" 

- 54392~' ' + 2 13522~ l3 - 700362~ l 4  + 2601674~' ' - 88368 1 2 ~  l6 

+ 31925046~'~ - 110323056~'~ + 393008712~'~ - 1369533048~~'. . . . 
(4.13) 

For the body-centred cubic lattice the corresponding expansions are extended by 
five coefficients and the ferromagnetic susceptibility is obtained through uZ8 : 

lnA(u) = . . .+3832961~~ '~-7941796~ '~+1118118u~~ 

+ 4301 6052~' - 1335950885~'~ (4.14) 

Z(U) = . . .-54012882uz4.+ 112640896~'~-5164464~'~ 

-694845120~'~+2160781086~'~.  , . (4.15) 

~ " ( y )  = . . . + 2 9 4 5 2 7 7 6 ~ ~ ~ -  61952896~" +4795392ys2 

+ 374024448~'~ - 1173895476~'~ . . . (4.16) 

$x(u) = u4+ 1 6 ~ ~ -  18u8 +252~' ' -  576~"+  519~' '  $ 3 2 6 4 ~ ' ~  - 1 2 4 6 8 ~ ' ~  

+ 2 0 5 6 8 ~ ' ~  + 2 6 6 6 2 ~ ' ~  - 215568~' + 528576~ '~  - 1 6 4 6 1 6 ~ ' ~  

- 3 0 1 4 8 8 9 ~ ~ ~  + 10894920~" - 13796840~'~ - 2 9 9 0 9 6 1 6 ~ ~ ~  

+ 190423962~'~ - 399739840~'' - 22768752~'~ + 2803402560~'~ 

- 8743064909~'~ . . . . (4.17) 
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Appendix 1. Ferromagnetic polynomials 

Face-centred cubic lattice 

$6 = p  

$11 = 6P2 

$12 = -@P2 

$15 = 8P3 

$16 = 42p3 
+ 1 7  = -i20p3 

t,b18 = 2p4+70+p3 

$ 19 = 24p4 
$20 = 123p4 

t,hZ1 = 126p4 

$22 = 3 0 ~ ' -  1653p4 

$23 = 9 6 ~ '  +2322p4 

$24 = / . ~ ~ + M 8 p ~ - 9 4 4 $ p ~  

t,bZ5 = 30p6+792p5 

$26 168p6-2871pS 

$27 = 8p7+776p6-16296p5 

$28 = 36p7 + 1212~' +49290p5 

$29 = 336p7+ 393Op6-45792p5 

$30 = 28p8 + 1350p7 - 6 9 0 4 ~ ~  + 14303tp' 

$31 

$32 = 786~ '  + 9036~'  - 64224~' 

$33 = 8Op9+2432p8- 1160p7+771272p6 

$34 = 4 3 8 ~ ~  + 9804~' + 1 0 3 8 ~ ~  - 1 3 2 9 2 4 0 ~ ~  

$35 

$36 

96p8 + 3528~' - 6 5 0 7 0 ~ ~  

6p10 + 1 7 7 6 ~ ~  + 193 14p8 - 28 1400p7 + 9221 52p6 

270,~" + 6 5 2 0 ~ ~  +29146p8 - 622498~' - 234103;p' 

$37 = 1464p10+23482p9+20550p8+1503912p7 

$38 = 9 6 ~ "  + 58Up'O +45351p9 - 322950p8+ 8 3 5 6 0 4 1 ~ ~  
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$39 = 848~ ' '  + 19154p'O+ 126016p9-474806p8-28260664p7 

$40 = 2 4 ~ ' ~  + 5298~' '  + 54066~" + 5 2 8 8 4 ~ ~  - 4371355ip + 34148478~'. 

Diamond lattice 

$2 = P 

$3 = 2P2 
$4 = 6p3 - 2$p2 

$ 5  = 22p4-16p3 

$6 = 2p6+91p5-91p4+ io+P3 

$7 = 2411' +396p6 - 512p5 + 122p4 

$8 = p" + 6p9 + 2 0 7 ~ ~  + 1746~'  - 2 8 7 7 ~ ~  + 1054~ '  - 53$p4 

$9 = 16p" + 1021('O+ 15O8p9+7574p8- 1 6 0 7 2 ~ ~  +8064p6-944p5 

$ l o  = 2p14+12p'3+ 198p'2+1120p1' +9834p10+31365p9-88765p8 

+ 57749~' - 1 1 0 5 8 ~ ~  + 31 lip5 

$ = 40p' + 2 4 0 ~ ' ~  + 2064p' + 9894~" + 58920~' ' + 1 18568~' 

- 4 8 2 1 3 6 ~ ~  + 3 9 5 0 1 8 ~ ~  - 1 0 7 6 0 8 ~ ~  + 7442p6 

$ 2 = 6p' + 42p' ' + 626p + 3 166p ' + 18836~' + 75 536p1 + 32723 1 p ' 
+ 368354~" - 2562436~"  + 2 6 0 7 4 0 2 ~ ~  - 939367$p8 

+ 110586~' - 19712~' 

$13 = 1 4 4 ~ 1 9 + 9 9 0 ~ 1 8 + 7 9 2 0 ~ ' 7 + 3 3 6 3 4 ~ 1 6 +  154248p'5+515810p'4 

+ 1682888,~'~ + 5 5 8 2 5 2 ~ ' ~  - 13251 196~ ' '  + 16692444~" 

- 7 6 1 8 1 2 8 ~ ~  + 1 3 0 9 5 9 0 ~ ~  - 59640~' 

$14 = 2 2 ~ ' ~  + 192p2'+2796p20+ 15501/~ '~+85696/~ '~  +308249pI7 

+ 1148682~ '~  +3199836pI5 +7916204p'4-4273104p13 

- 66199876~'~ + 103918606p" - 5848177Op'O 

+ 13515382~~ - 1 0 7 6 4 9 1 ~ ~  + 13215+p7 

$ 1 5  = 2p26+ 12p25 + 5 4 ~ ~ ~ + 7 8 8 p ~ ~  + 5 6 1 0 ~ ~ ~ + 4 2 7 9 6 p ~ ' +  1 9 1 9 7 8 ~ ~ ~  

+816892p'9+2517586p'8 +7844420pl7 + 18106680p'6 

+32944408pI5 - 58478578~'~-  316157712~'~ +629834815$~'~ 

-429703296~' ' + 126923238&i1O - 15044957;~~ +484522p8. 

Simple cubic lattice 

*3 =I( 

* 5  = 3p2 
$ - -3'2 
6 - 2p 
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$ 7  = 15p3 

$8 = 3p4-36p3 

$9 = 83p4+21$,u3 

$10 = 48p' - 3 2 8 3 ~ ~  

$ 1 1  = 18p6+426p5+405p4 

$1 2 = p8 + 8p7 + 496p6 - 28O4p' - 162$p4 
$13 = 378p7 + 1575p6 + 5532p' 

$14 = 24p9 + 3 0 6 ~ ~  + 3888~ '  -22144+p6-4608p' 

$1 5 = 24,~" + 1 2 7 ~ ~  + 4 6 2 2 ~ ~  - 1360~'  + 6 4 5 7 4 ~ ~  + 14Oep' 

$16 = 3p1' +24p"+396p10+ 5544p9+2239@p8- 1 5 7 3 8 0 ~ ~ - 8 4 7 3 8 ~ ~  

$17  = 6 6 0 ~ "  + 4131~10+40050~9-106113~s +674652p7+53370p6 

$18 = 96pt3 + 1080pf2 + 6656~" + 67267p1*+ 6 0 8 0 4 ~ ~  - 94758251' 

- 1261904~'- 1315@p6 

$ 19 = 1 1 4 ~ ' ~  + 732p13 + 11 5 6 2 ~ ' ~  + 70275p" + 236808~" - 1368954~~  

+ 6 3 9 2 7 6 9 ~ ~  + 1240035~' 

$20 = 1 5 , ~ ' ~  + 168,~" + 2 3 4 0 ~ ' ~  + 23976~' + 101 6 8 5 ~ ' ~  + 602928~' 

-614784~" - 3 9 7 8 3 0 0 ~ ~  - 16362155:p' - 6 2 8 2 3 6 ~ ~ .  

Body-centred cubic lattice 

+4 = P  

$ 7  = 4 p 2  

$10 = 28P3 

= -41 2 2 P  

$11 = -64p3 

G 1 2  = 12p4+36+p3 

$ 13 = 2 0 4 ~ ~  

$14  = 1 2 ~ '  - 798p4 

$ 1 5  = 216p5+948p4 

$ 1 6  

$ 1 ,  = 312,d - 9072~'  

27p6+ 1262~ '  - 366$p4 

$18 = 72p7 +2368p6 + 1 7 5 9 2 ~ ~  

$19 = 4p8 + 704p7 + 4 3 1 2 , ~ ~  - 14184~' 

$20 = 1 9 8 ~ '  +4404p7 -92992p6+4174&' 

$21 = 24p9+2016p8+17616p7+275021~p6 
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$22 = 692,~' + 1 0 3 0 0 ~ ~  - 3 6 3 4 8 ~ ~  - 3 5 3 6 4 0 ~ ~  

$23 = 1 5 6 ~ ' ~ + 5 8 1 6 ~ '  +41352/~'-833064~~+216036/.~~ 

$ 2 4  = 1 2 ~ "  +2418~'0+30714~' + 5 5 5 3 6 ~ ' + 3 7 9 5 7 2 6 / ~ ~ - 5 1 4 4 4 + / ~ ~  

$ 2 5  = 8 0 0 ~ "  + 19568~" +99648p'-989076p8 -7072736~~  

$26 = 1 6 8 ~ ' ~  +9720p1' + 89832~" + 226692~' - 6007194~' + 6798900~~  

$27 = 2 4 ~ '  + 3924~ '  + 651 1 2 ~ '  + 312984~' - 8 8 7 6 8 8 ~ ~  + 46866408~' - 3344712~~  

$28 = p'5+14p14+1327p13+39762p12+302497p'1+534960p10 

- 13103579~'- 122039509~~ +669438+p7. 

Appendix 2. Antiferromagnetic polynomialst 

t This supplements appendix 5 of I. For consistency we quote the results for 2 In A'. 
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